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This paper gives the equilibrium distribution of polymer sizes for Flory's 
AgRBf_g model of polymerization. In this model, the polymers are composed of 
structural units with g functional groups of the type A and ( f -  g) functional 
groups of the type B. Reaction is subject to three conditions: (1) Functional 
groups of the type A react only with those of type B, and vice versa. (2) 
Intramolecular reactions do not occur [and therefore only branched-chain 
(noncyclic) polymers and formed]. (3) Subject to conditions (1) and (2), all 
functional groups are equally reactive. The derivation employs Stockmayer's 
statistical mechanical method (first used on Flory's RAy model), coupled with a 
recursion giving the number of distinct polymers which may be assembled from 
k units of the AgRBf_g type. We also give distributions for a limiting case of the 
AgRBf_g model, the so-called AgRB~ model. This paper completes the solution 
of the Smoluchowski coagulation equation (monodisperse case) for the kernels 
ay = A + B(i + j) + Cij. The proof will be given in another publication. 

KEY WORDS: Polymerization; coagulation equation; RAy model; AgRBf_g 
model; random polycondensation. 

1. I N T R O D U C T I O N  

This p a p e r  gives the equ i l ib r ium dis t r ibu t ion  of po lyme r  sizes for F lo ry ' s  

AgRBf_g mode l  of po lymer iza t ion .  
The  bes t -known mode l  of po lymer iza t ion  is Flory 's ( l )  RAy model ,  also 

k n o w n  as the f-functional random polycondensation model. In  this model ,  
each s t ructura l  uni t  of a po lymer  has  f func t iona l  groups  of the type  A.  
Reac t ion  is subject  to three condi t ions :  

1. Func t i ona l  groups  of the type  A react  with one another ,  fo rming  
b o n d s  be tween  units.  See Fig. la .  
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Fig. 1. Reaction of a pair of units: below, for the AgRBf_g model (g  = 1, f =  4); above for 
the RAy model ( f  = 4). 

2. Intramolecular reactions do not occur [and therefore only 
branched-chain (noncyclic) polymers are formed]. 

3. Flory's (l~ Principle of Equireactivity: subject to conditions (1) and 
(2), all unreacted functional groups are equally reactive. 

On the other hand, in the AgRBf_g model, each structural unit has g 
functional groups of the type A and ( f -  g) groups of the type B. The 
conditions on reaction remain unchanged, except that (1) is replaced by 
(1'): Functional groups of the type A react only with those of type B, and 
vice versa. See Fig. lb. 

Flory (2~ gave the gel point for the RAy model in 1941. Using statistical 
mechanics, Stockmayer (3~ gave the distribution for the RAy model in 1943. 
In Spouge (41 I extended Stockmayer's methods to determine the gel point 
of the AgRBf_g model. The extension rested on a combinatoric identity: 

k - l ( k )  a 
2 ( k -  1)w k = E WiWk-i i,(k-i) (1) 

i=1  i 

w k is the number of ways of assembling a k-mer (polymer of k units) 
from its constituent units, and %. as the number of ways of bonding an 
i-mer and a j-mer together. We give a proof of (1): the left side is the 
number of ways of assembling a k-mer, choosing one of its bonds [non- 
cyclic k-mers must have ( k -  1) bonds], then painting one of the two 
polymers on either side of the chosen bond black. This equals the right side, 
which is the number of ways of choosing i units out of k units (i 
= 1 . . . . .  k - 1), painting the i units black, assembling a painted i-mer and 
an unpainted (k - i)mer, and then bonding the two polymers together. 

This identity unified several polymerization models and permitted me 
to derive and summarize all explicit solutions of the Smoluchowski (5) 
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coagulation equation (monodisperse case) implicit in Drake's (6) review of 
coagulation. These solutions (as Ziff (7) notes) include the RAy and A 1RBf_ 1 

distributions. They do not include the AgRBf_g distributions for general g. 
For RAf polymers obeying classical statistics (so that units and func- 

tional groups, though chemically identical, are distinguishable) 

%.=[2  + ( f -  2)i] [2 + ( f -  2)j] (2) 

(The right side is the product of the numbers of unreacted groups on an 
i-mer and aj-mer.) For the AgRBf_g model 

a,7 = 2 + ( f -  2)(i + j )  + 2(g - 1 ) ( f -  g - 1)/j (3) 

We may consider models where f tends to infinity, yielding the RA 
model, for which 

a~j = O" (4) 

and the AgRB~ model, for which 

a,j = i + j  + 2(g - 1)0' (5) 

(These are derived from their finite counterparts by selecting the dominant 
term of aj as f tends to infinity, then dropping an irrelevant proportionality 
factor.) 

All of theses cases have the form 

aij = A + B( i  + j )  + Cij (6) 

For these a0's the generating function 

W k  - Bk  Z = ~ ~ e (7) 
k = l  " 

(where/3 is a parameter yet to be determined) recasts recursion (1) as an 
ordinary differential equation: 

2 ( - Z ' -  Z )  = A Z  2 -  2 B Z Z ' +  C(Z')  2 (8) 

(Z', Z",  etc. denote successive derivatives with respect to /3.) To better 
appreciate the significance of (8), we review Stockmayer's (3) derivation of 
the RAf distribution. 

In a closed system of M polymers, assembled from N units, the 
polymer size distribution (ml ,m2,m 3 . . . .  ) (i.e., m 1 units, m 2 dimers, m 3 
trimers, etc.) satisfies the constraints 

M--  ~ m k (9) 
k = l  

N = ~,, km k (1 O) 
k = l  
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The total number of ways of producing the size distribution (ml,m2, 
m 3 . . . .  ), subject to these constraints, is 

O0 mk 

~(ml ,m2 ,m  3 . . . .  ) = N ,  1-1 ~k .~(wk)  k=l (11) 

The proof is standard: S2 equals the number of ways of partitioning the N 
units into m I subsets of one unit, m 2 subsets of two units, etc., multiplied by 

m I m m 3 . . , W 1 W 2 ~W 3 . the number of ways of assembling the subsets of units into 
polymers (see Percus(8)). 

Treating the system like a microcanonical ensemble, Stockmayer (3) 
used Lagrange multipliers (the method of most probable distributions from 
statistical mechanics, e.g., Schrtdinger (9)) to maximize (natural) log~2, 
subject to the constraints on M and N. The most probable size distribution 
(ml,  m2, m 3 . . . .  ) is given by 

�9 w~ e-v-Bk (12) m k =  k! - 

where/3 and 7 are Lagrange multipliers. Equation (12) represents the first 
term of an asymptotic expansion valid before the gel point (Spouge(4)). 
Equation (7) gives 

m ~  m k _ 1 wk 
M Zmff Z k! e-~k (13) 

Determination of/3 and Z yields the polymer distribution. 
Introduce the separation of the system: 

ix = M / N  (14) 

(ix is the concentration of polymers when the concentration of units is 
normalized to 1.) In conjunction with (9), (10), (12), and (7), this shows 

Z = - ixZ' (15) 

Combining this with the differential equation (8) gives 

2 i x ( l  - 
Z = (16) 

Aix 2 + 2Bix + C 

Solution of the differential equation (8) for e -a  in terms of Z, yields 
the polymer distribution (13) in terms of ;t. 

For C = 0 or B 2--- A C, I gave w k explicitly. In other cases, we can 
only determine the asymptotics of w k. Note, however, the exact wk's are 
always given by recursion (1). 

The next section solves the differential equation for e-/~ in terms of Z, 
while the section after gives the asymptotics of w k. The discussion then 
relates the results to the AgRBf_g distributions. 
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2. SOLUTION OF THE DIFFERENTIAL EQUATION 

Solve for Z '  in equation (8) and separate the variables 0rice(l~ then 
integrate: 

C 
- f l = f  I _ B Z _ [ I _ Z ( B + C ) Z + ( B 2 _ A C ) Z 2 ] V 2  dZ (17) 

The cases C -- 0 and B 2 = A C were solved in Ref. 4 and elsewhere, so we 
exclude them. 

The integral is a standard form, and Edwards ~ gives the method of 
solution. We split the integral into three cases. 

Case1: B 2 < A C  

Complete the square inside the radical to throw the root into the form 

a l l -  b2(Z + ~)2] 1/2 (18) 

where 

C(A + 2B + C) 1 ~/2 a = ~ ]~--7 (19) 
AC 

A C -  B 2 b-- (20) 
[ C(A -'1- 28  "1- C)J 1/2 

B + C (21) 
7 - A C -  B 2 

Use the substitution 

0 = arcsin[ b ( Z  + 7) ] (22) 

To rationalize the resulting integrand, we employ 

to give 

(22) and (23) yield 

V = tan�89 (23) 

f 1 -  V 2 dV (24) 
- f l =  ~7 V2~-~--~--q_c 1 +  V 2 

1_[1_ b2(Z + 
v = b ( Z  + (25) 
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Let 

Note that 

8 =  B 
b(1 + B7 + a) (26) 

l + B y - a  
(27) 

{ -  1 4- B7 4- a 

2c (28) 
n =  ( l + B T + a ) b  

V 2 -  2 6 V +  e = ( V -  a , ) ( V -  a2) (29) 

~, = 8 + (8 2 - { ) , /2  (3o) 

~2 = ~ - ( ~ 2 -  {)~/2 (31) 

Under the assumed conditions, a~ and a 2 are real and distinct. Partial 
fraction decomposition gives 

f ( rl r2 ) p V  + q + - - + - -  dV  (32) 
- f l  = ~ 1 +  V 2 V -  a 1 V -  a 2 

p = 48 (33) 
(r  - -  1) 2 4" 4 8 2  

- 2 ( 1 - { )  
(34) 

q =  ( { - 1 )  2 + 4 8 2  

1 - -  a 2 1 
r 1 = - -  (35) 

1 + a ~  a l  - a2 

l - a 2 - 1  
r 2 = - -  (36) 

1 + a2 2 al - -  a2 

where 

Equation (32) may be integrated directly: 

A (= 

e - r  Kexp{~[  �89 + V 2) + qarctan V 

+ r,ln( V - a,) + r21n ( V - a2) ] } 

2x 
= exp h (V)  (37) 

indicates a definition.) K is a constant of integration and exp and In 
denote exponentiation and logarithm to the base e, respectively. We now 
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determine K: 

lira , ,(ZeB] = w 1 = 1 
/3--->0o 

[see (7)]. Equation (25) gives 

1 Z =  - v  + -~ " 

Equation (25) shows Z is zero when 

2V 
1 + V 2 - f ( V )  

(38) 

(39) 

v =  l - [ 1 -  b2r ~/2 
b7 oq (40) 

(The second equality is tedious algebra.) We may also verify that ~/ri = 1. 
L'Hrpital 's  rule gives 

K =  lira Z e ~ K  
V-~ot  1 

_ 2 l - a 2  e x p { - ~ / [ � 8 9  } 
b (1 +~;)2 

(41) 
where 1 /e  # = e -B was introduced as a denominator. The numerator and 
denominator were differentiated with respect to V [see equations (37) and 
(39)] and then evaluated for V = a 1. Determining K gives the value of e -B 
for fixed /~, since Z, and hence V [equations (16) and (25)] are known 
functions of t~- 

C a s e 2 :  B 2 > A C, A 4= O 

In this case, the square root in (17) becomes 

a[b2(Z- r '/2 

where 

[ C ( A  + 2B + C )  ] '/2 
, =  ~ - ~ _ - ~  

B 2 A C  b =  
[ C(A + 2B + C)]  ~/2 

B + C  
Y - B 2 - A C  

(42) 

(43) 

(44) 

(45) 
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The serial substitutions 

0 = arccosh E - b ( Z  - y)] 

V =  tanh�89 

[where "h" indicates the hyperbolic analog of the corresponding ~rigono- 
metric function (Edwards (11~)], yield 

where 

and 

f 2 V  d V  (46) 
- / 3 =  17V 2 - 2 ~ V + c  1 -  V 2 

-b(Z-  v)- 1 ]1/2 
V =  _ b ( Z  y ) ~ l  (47) 

8 - ab 
B - b + Bby  (48) 

B + b - Bby  
- B - b + B b y  (49) 

- 2 c  (50) 
~1-  B -  b + Bb7 

When a 1 and a2 are given by (30) and (31), and A v a 0; eL, 0/2, and ___ 1 are 
all real and distinct. Hence 

where 

;( r, 1 P + + - -  + - -  d V  
- ~ =  ~ 1 - V  a 1 V a2-V  

(51) 

1 ( 5 2 )  
e = (1 - ~ , ) ( 1  - 0/2) 

- 1 ( 5 3 )  
q = (1 -Jr- 0/1)(1 -~- o/2) 

-20/1 
r~ = (54) 

( ~ 1 -  0/2)(1 - ~) 

- 2a 2 
r2 = ( 5 5 )  

(0 /2 -  0/,)(1 - 0/~) 
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Integration gives 

e - B =  K e x p { B [ - p l n ( 1  - V) + qln(1 + V) 

- rlln(a , - V) - r21n(a 2 - V)]}  

A 
= exph(V)  (56) 

We determine K as before 

1 1 _+V2 A 
Z = y - ~ .  I V 2 - U(V) (57) 

Z is zero for 

v=Iby-1 11/2 
by + 1 = a2 (58) 

Using l'H6pital's rule as before (with a 2 in place of al ,  and ~/r 2 = - 1  
instead of ~/r I = 1), we get 

4a2 
K -  b(1 - a~): e x p ( - , [ - p l n ( 1  - a:) + qln(1 + a 2 ) -  r , l n ( a , -  a2)]} 

/ 

(59) 

Case 3: B 2 > A C , A = 0  

All proceeds as in Case 2, up to the partial fraction decomposition 
(51). When A = 0, a I = 1, which introduces a double root into the denomi- 
nator. Hence 

- / ~ =  n v)2 + + - - + - -  d v  (60) 

/ ' 1 - -  
2(1 - a2) 2 

and q and r2 are as before [(53) and (55) with al 
Integration gives 

e - ~ = K e x p { ~ / [  I-IPP V 

A 
= exp h (V)  

1-V a2-V 
-1 P- l_a2 

- ( 1  + a~) 
(62) 

-- II. 

+qln(1  + V ) - r , l n ( 1 -  V ) - r 2 1 n ( a  2 -  V ) ] )  

(63) 

(61) 
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Equations (57) and (58) still hold, so l'HSpital's rule gives 

K -  b/l----- 2~ 2 t  l - a ~ )  4a2 exp {-77[ 1 pot 2 +q  ln(1 + ~ r l ln (1-  ~ (64) 

3. ASYMPTOTICS OF THE COEFFICIENTS 

While the recursion (1) for Wk, coupled with the formulas for e -B, 
determines the terms of Z, it says little about their asymptotic behavior. 
This is dependent on the behavior of w,,/n! as n tends to infinity, which we 
now determine. 

In all cases 
Z = f ( V )  (65) 

and the w~/n! are the coefficients of f(V), expanded as a power series in 

e-8 = exp h(V) (66) 

If a denotes a 1 in Case 1, or a 2 in Cases 2 and 3, then e -~ approaches zero 
as V approaches a. By Lagrange's formulas for expansion of one function 
in powers of another (Whittaker and Watson(12) ) (i.e., Z in powers of e-P) 

w,__ d"-I { [ V - a  ]"} 1 (67) 
n! dV"-' f '(V) exph(V) v = .  n! 

The subscript denotes evaluation at V=  a. By Cauchy's integral 
formula for derivatives (Whittaker and Watson (~2)) 

w. 1 ~(~)f'(V)exp-nh( n! - 2~rin [ V)] dV (68) 

The subscript (a) indicates the integral is taken counterclockwise along 
a contour enclosing a, and enclosing no other pole of the integrand. For 
reasons explained later, we integrate by parts to give 

n! 2qrin 2 ~)-dV h'(V) .exp[-nh(V)]dV (69) 

(The other term is evaluated around a closed contour and vanishes.) 
In order to give the asymptotics of the integral by the saddle-point 

method (Carrier, Krook, and Pearson (~3)) we deform the contour of integra- 
tion to pass through a point where Neh(V) has a minimum, so that (for 
large n) the greatest contribution to the integral occurs in the neighborhood 
of the point. Such points are among the saddle-points of h(V), where 
h'(V) = O. h'(V) for the various cases is given by the integrands of (24) 
[Case 1, where h'( + 1) = 0] and (46) [Cases 2 and 3, where h'(0) = 0]. 
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Case 1: B 2 < A C  

p V  + 2qV - 
h"(V) = - ~  (1 + V2) 2 

At the possible saddle-points 

rl r2 t + (70) 
P + (v- ~)2 (v- <~)2 

q rl r2 1 h'(_+ 1) = - r /  + + + -- ~ 0  (71) 
(+ 1 - ~ , ) 2  ( +  1 - ~2) 2 

We will deform the contour to pass through V = 1, perpendicular to 
the real axis, since, along the contour, •eh(V) will then have a local 
minimum at V = 1. The contour may be further deformed to ensure this 
minimum is global. Using a variant of Laplace's method (Carrier, Krook, 
and Pearson (13)), we derive 

n !  2~rin 2 " ~ " d@ f ' (  . e x p [ - n h ( 1 ) ] .  i (72) 
h ' (V)  v=l 

where ~ indicates that the ratio of the two sides approaches 1 as n tends to 
infinity. Evaluation of the derivative of the quotient gives 

" 1 - e l  - 1  ]1/2 n! b'q 2,zrh';(1) exp[-nh(1)]n-512 (73) 

The original integrand (68) had a zero at the saddle-point V = 1. The 
integration by parts eliminated the zero, allowing direct application to 
Laplace's method. 

Case 2: B 2 > A C , A v  aO 

rl i'2 1 
h " ( v )  =,7 (1 p---v (1 -q+v + - + - (oq v )  ~ (,~2 v )  2 

(74) 

For the saddle-point 

= n ( p  - 
/ 

h"(0) 

Similar methods as before yield 

n! 2~in 2 " ~ "-d-V h - ~  v=o 
�9 exp [ - nh (0) ].  ( -  i) (76) 

r 1 r 2 ) 
q + a--~ + a--~ < 0 (75) 
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( - i )  occurs instead of i at the end because, in contrast to Case 1, 
integration along the contour passes through the saddle-point from the 
upper half-plane to the lower half-plane. This is because 0 < a in Case 2, 
whereas a < 1 in Case 1, (0 and 1 are the saddle-points for contour 
deformation.) 

This gives 

wn 4 3 [ - 1  J 1/2 
n! b~/ 27rh"(0) exp[-nh(O)]n-5/2 (77) 

Case 3: B 2 > AC,  A = 0 

_ . F1 r 2 J 2p q + -  + - (78) 
h " ( V ) = ~  ( l - V )  3 (l + V) 2 ( l - V )  2 ( ~  V) 2 

The asymptotics are still given by (77). In (77) the formulas appropriate to 
Case 3 (for b, 3, ~ etc.) must then be applied. 

4. DISCUSSION 

We summarize our results in Table I. The appropriate parts of the 
paper give the values of the parameters, which are given by different 
formulas for different cases. 

These formulas, though lengthy, are practical for computation. The 
proportion of units found in k-mers is 

k m t _  kmt Z1 Wk t~ Wk -~k 
N Gkm~ - kvf. e - ~ =  - ~ k ~ e  (79) 

[See Eqs. (10), (12), (7), and (15).] Figure 2 graphs the cumulative total, 

nm* 
N vs. K (80) 

n<k 

for different models and values of bt. 
[Models of the type AgRBg, for which A = 2, B = 2 ( g - 1 ) ,  and 

C = 2 ( g -  1) 2, fall into the case B2= AC, which was covered in Ref. 4. 
Hence, neither Table I nor Figure 2 includes them.] 

All solutions are equilibrium solutions. (Reference 4 discusses this point 
in greater detail.) As Ziff (7) notes, the equilibrium distributions for the RAy 
and A1RBy_ 1 models determine distributions for the corresponding irrevers- 
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ible polymerization processes (this point was known to Stockmayer (3) in 
1943 for the RAy model). 

In fact, the solutions given in this paper complete the solution of the 
coagulation equation (monodisperse case) for %'s of the form (6). The 
proof will be given in a later publication. 

Table I. Specific Polymer Distributions for any 

aij = A + B(i + j)  + Cij: m~M Z1 Wkk! e-~k' Z -  2/L(1 - /~)  
Atx 2 + 2Bt~ + C ' 

Wk ~ ~ 1  Wi Wk_i 
2 ( k - 1 ) ~ (  k=l i! ( k - i ) !  ai'(k-i) 

i iii iiiii 

aq Case 1 Case 2 Case 3 

Classes Cv~O, B 2 < A C  C~O,  B Z > A C ,  A~=O C ~ O B 2 > A C ,  A = O  

Model  N o n e  AgRBf _ g AgRB oo 
( g ~  1,�89 f -  1) (by ~ 1) 

A 2 0 
ag B f - 2  1 

C 2(g - 1 ) ( f -  g - l) 2(g - l) 

V b(Z + "{) b(Z  - y) + 1 b(Z  - y) + I 

i 

Case 1 : 

2 l - a ~  . ( V _ a l ) . e x  p ~ 1 p  l + a ~  + r 2 1 n - -  e - f l  exph(V) 
b ( |  - 012) 2 0tl - -  ~ 2  

+q(arc tanV-arc tana , ) ] )  

Case 2: 

e -/~ = exp h(V) 
4a2 

Case 3: 

e -• = exph(V) 
b(1 - a~) 2 

( 1 -  V _ r l n a t  - V .(,~- v) .exp , - p l ~ l - z - ~  , ~_-~ 

,n 1+ V'~ 

4a2 ( [ a 2 -  V 
- -  . (a 2 -  V).exp v/ - p ( l _  V ) ( 1 - a 2 )  

+ , I + V  

1 - V  
- r l l n  1 ---~22 
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Fig. 2. Proportion of units found in polymers of size less than or equal to k against the 
polymer size k. Ordinates have been plotted for integral k, then joined by a smooth curve, In 
all the figures, the curves given are for fixed values of/~. The highest curves are for/z = 0.6; the 
curves beneath represent decrements of 0.05 in # (decrements in/~ indicate the formation of 
larger polymers). The lowest curves (in heavy line) represent the polymer distribution just 
before the formation of an infinite polymer (which occurs at the critical value of/~, Ixc). The/~ 
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for the lowest curves is/~c, accurate to 6 decimals, but rounded up. The model and rounded #c 
accompany each figure. The ordinates for fixed # and k decrease from (a) to (f), whereas the 
ordinates for #c (different for each model) and fixed k increase from (a) to (f). Such 
comparisons may have generalizations. (a) AaRB 3 P-c = 0.366026; (b) A2RB 4/~c = 0.379797; (c) 
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